Review for Logs Test

Date

\ Solve each equation.

1)
$$6^{-3x} = 6^{2x}$$

$$-3x = 2x$$
 >> $x=0$
+ $6x$ + $3x$
0 = $5x$

3)
$$8^{-3n} = 16^{-n-3}$$

$$(2^3)^{-3n} = (2^4)^{-n-3}$$

5)
$$4^{-3\nu} = \frac{1}{64}$$

$$4^{-3v} = 4^{-3}$$

$$-3v = -3$$

$$2^{-2n} = 32$$

$$2 - 2n$$

$$2^{-2n} = 2$$

$$-2n = 5$$

$$10 = 5/2$$
4) $4^{2x+3} = 64$

4)
$$4^{2x+3} = 64$$

$$4^{2x+3} = 4^{3}$$
 $2x+3=3$
 $2x=3$
 $2x=3$

6)
$$5^{3x} = 625$$

$$5^{3x} = 5^{3}$$

Solve each equation. Round your answers to the nearest ten-thousandth.

7)
$$17^a = 27$$

$$\log_{17} 27 = a$$
 $\log_{17} 100$
 $\log_{17} 27 = a$
 $\log_{17} 27 = a$

8)
$$e^b = 63$$

$$he^{b} = 10.63$$

 $h = 4.1431$

9)
$$10^{9x} = 70$$

10)
$$7^{x+7} = 67$$

$$\log_{7} 67 = X + 7 > 2.1608 = x + 7$$

$$\log_{7} 67 = X + 7 > -4.8392 = X$$

$$\log_{7} 67 = X + 7$$

11)
$$18^{k-4} - 6 = 71$$

12)
$$e^{5n} + 8 = 31$$

$$e^{5n} = 23$$
 $5n = 1n(23)$
 $5n = 3.1354$

$$n = 0.627$$

CR Algebra II - Log Application Practice

Name:

1. Adam invested \$400 in a CD that pays out 5.5% percent interest compounded monthly. What is the amount after 11 years?

A = A

$$A = 400 (1 + 0.055)^{13.11}$$
 $A = 400 (1 + 0.055)^{13.11}$
 $A = 400 (1 + 0.055)^{13.11}$

Sarah has a savings bond that will be worth \$15,000 in 10 years. The interest rate of the bond is 8.25% that is compounded semi-annually. Find the present value of the bond.

$$A = 15000
P = X
15000 = P(1 + $\frac{0.0825}{2})^{20}$

$$15000 = P(1 + \frac{0.0825}{2})^{20}$$

$$15000 = P(1 + \frac{0.0825}{2})^{20}$$$$

3. \$1000 is invested at 4.7% in an account that is compounded continuously. How long will it take for the account to double?

$$A = 2000$$
 $2000 = 1000 e^{0.047t}$
 $P = 1000$ $2 = e^{0.047t}$
 1000 1000

4. How much money did Jenifer invest 10 years ago in an account that has a rate of 6% compounded continuously if he has a current balance of \$4008.66?

5. Tim invested \$5000 in a bond that has an interest rate of 7.65% compounded quarterly. The current value of the bond is \$6500. How long did Tom leave his money invested?

A=6500
P=5000

$$t=0.0765$$
 $t=0.0765$
 $t=0.$

6. If \$1000 is invested in an account that is compounded continuously for 8 years, the account grows to \$3800. What would the interest rate be on the account?

$$A = 3800$$
 $3800 = 1000 e^{180}$
 $P = 1000$ $3.8 = e^{80}$
 $N = e$ $\frac{\ln(3.8)}{8} = \frac{80}{8}$ $N = 0.167$
 $1 = 8$

GROWTH AND DECAY:

7. The mice population is 15,000 and is decreasing by 13% each year. Write a formula for this situation. What will be the mice population after 2.5 years?

A=
$$A = 15000 (1-0.13)^{2.5}$$

P=15000
 $C = 0.13$
 $C = 0.13$
 $C = 0.13$
 $C = 0.13$

8. Teachers in Georgia are promised a 3% raise in yearly salary every year for the next 5 years. Write a formula for teachers' salaries. If a teacher is making \$62,000 now, how much will they be making in 5 years?

$$A = 62000 (1-0.03)^5$$

 $A = 153241.51

9. The number of mosquitoes at the beach has increased 42% every year since 1999. In 1999, there were 2,500 mosquitoes. Write a formula for this situation. How many mosquitoes would you predict were at the beach in 2020?

10. The Ilama population has been growing by 2.5% every year. There are currently 1.08 million Ilamas in 2018. Write a formula for the Ilama population. Then use it to predict the population in the year 2027. $A = 1.08 (1 + 0.025)^{t}$

$$A = 1.08(1 + 0.025)^9 = 1.35 \text{ million llamas}$$

11. A new computer was purchased for \$1250. The value of the computer depreciates at a rate of 7.1% per year. Write a formula for the value of the computer. How much will the computer be worth in 4 years? $A = (250)(-0.07)^{\frac{1}{2}}$

12. A new car was purchased for \$51,999. The value of a new car of this model depreciates at a rate of 17% for year. Write a formula for the car's value. What will the value of the car be in 6 years?

$$A = 51,999 (1-0.17)^{t}$$

 $A = 51,999 (1-0.17)^{c} 17000.57