Today we learned about finding possible rational roots. Where the P's are the constant term and the Q's are the leading coefficient of the polynomial. Below are the notes we took in class and the homework assignment.

Possible Rational Roots:

P: Factors of the constant term 6:1,2,3,6
Q: Factors of the leading coefficient $3: 1,3$
$\pm \frac{p}{q}: \pm 1, \frac{1}{3}, 2, \frac{2}{3}, 3,66^{\frac{3}{3}=1 \text { Soleftort } \frac{6}{3}=2 \text { sod ft }}$
If your calculator does not give you a
head start, you must find the possible
rational roots.
$f(x)=4 x^{3}-3 x^{2}+4 x-3$
6a-3
$P: \pm 1,3$
Lc. 4
$Q: \pm 1,2,4$
$\pm \frac{p}{q}: \pm 1, \frac{1}{2}, \frac{1}{4}, 3, \frac{3}{2}, \frac{3}{2}$

Type the possible rational roots into the table of your calculator. If the possible rational root gives you a 0 for the y value, then that number is one of your roots.
\qquad
Finding Possible Rational Roots \qquad State the possible rational roots for each function.

1) $f(x)=3 x^{4}-x^{2}-10$

$$
\text { 2) } f(x)=5 x^{3}+9 x^{2}+3 x-1
$$

$$
p: 1,2,5,10
$$

$$
p_{i}
$$

$$
Q: 1,3
$$

$$
q: 1,5
$$

$$
\pm \frac{p}{9}: \pm\left(1, \frac{1}{3}, 2, \frac{2}{3}, 5, \frac{5}{3}, 10, \frac{10}{3}, \pm \frac{p}{9}: \pm\left(1, \frac{1}{5}\right)\right.
$$

$$
p: 1,5
$$

$$
q: 1,2
$$

$$
\begin{aligned}
& p: 1,2 \\
& q: 1,3,5,15
\end{aligned}
$$

$$
\frac{p}{q}: \pm\left(1, \frac{1}{2}, 5,5 / 2\right)
$$

$$
\frac{\frac{7}{9}}{9}: \pm\left(1, \frac{1}{3}, \frac{1}{5}, \frac{1}{15}, 2, \frac{2}{3}, \frac{2}{5}, \frac{2}{15}\right)
$$

$p: 1,3,9,27$

$$
p=1,2,4
$$

$q: 1,5$

$$
q: 1,3
$$

$$
\begin{array}{ll}
\frac{p}{q}: \pm(1,1 / 5,3,3 / 5,9,9 / 5,27,27 / 5) \\
p: 9 / q: \pm(1)=5 x^{2}+29 x^{2}+19 x-5 \\
p: 1,24,4,7,4,28 & 15 x^{2}+28 \\
q: 1,2 & p: 1,5 \\
q: 1,5 \\
\frac{p}{q}: \pm\left(1, \frac{1}{2}, 12,4,7,7 / 2,14,28\right) & \frac{p}{q}: \pm\left(1, \frac{1}{5}, 5\right) \\
9)(x)=3 x^{2}-x^{2}-3 x+1 & p: 1,4 / 3) \\
p: 1 & q: 3,6 \\
q: 1,3 & q: 1,5 \\
\frac{p}{q}: \pm\left(1, \frac{1}{3}\right) & \frac{p}{q}: \pm\left(1, \frac{1}{5}, 2,2 / 5,3, \frac{3}{5}, 6, \frac{6}{5}\right)
\end{array}
$$

11) $f(x)=x^{4}-26 x^{2}+25-5$

$$
\left.\begin{array}{r}
-5 \int \begin{array}{cccc}
1 & 0 & -26 & 0 \\
-5 & 25 \\
-5 & 25 & 5 & -25 \\
1 & -5 & -1 & 5 \\
\hline
\end{array} \\
x^{3}-5 x^{2}-x+5
\end{array}\right)=0
$$

Roots:

$$
\pm 1, \pm 5
$$

-2) $18 \quad 20 \quad 16$

$$
x^{2}+6 x+8=0
$$

$$
(x+4)(x+2)=0
$$

$$
x=-4 x=-2
$$

-5) $179-7-1$

$$
\begin{aligned}
& \begin{array}{cccc}
-5-10 & 5 & 10 \\
\hline 12 & -1 & -2 & 0
\end{array} \text { Root: } \\
& \begin{array}{ll}
x x^{3}+2 x^{2}-x-2=0 & -5, \pm 1,-2 \\
2
\end{array} \\
& x^{2} x^{3} \frac{2}{2 x^{2}} \quad\left(x^{2}-1\right)(x+2)=0 \\
& -1|-x|-2-2 \\
& \text {-3) } 1 \begin{array}{lllll}
1 & -10 & -4 & 24
\end{array} \\
& \begin{array}{ccccc}
-3 & 6 & 12 & -24 & \text { Roots: } \\
\begin{array}{cccc}
1-2 & -4 & 8 & 0
\end{array} & -3, \pm 2,2
\end{array} \\
& x^{3}-2 x^{2}-4 x+8=0 \\
& x^{2} \stackrel{x-2}{\mid x^{3}-2 x^{2}}\left(x^{2}-4\right)(x-2)=0 \\
& \begin{array}{c|c|c|}
x^{2} & \mid x^{3} & -2 x^{2} \\
\hline & -4 x \mid & 8 \\
\hline
\end{array} \\
& x= \pm 2 \quad x=2
\end{aligned}
$$

12) $f(x)=x^{2}+3 x^{2}-18 x-40 ;-3$

-5) | 1 | 3 | -18 | -40 |
| ---: | ---: | ---: | ---: |
| | -5 | 10 | 40 |
| 1 | -2 | -8 | 10 |

$$
\begin{aligned}
& x^{2}-2 x-8=0 \quad \text { Roots: }-5,-2,4 \\
& (x-4)(x+2)=0 \\
& x=4 \quad x=-2
\end{aligned}
$$

14) $f(x)=x^{3}+6 x^{2}-7 x-60 ; 3$

3] $16-7-60$

3	27	60
	920	0

$$
x^{2}+9 x+20=0
$$

$$
-5,-4,3
$$

$$
\begin{gathered}
(x+4)(x+5)=0 \\
x=-4 x=-5
\end{gathered}
$$

$$
\begin{aligned}
& x=-4 x=-5 \\
& x=-11 x
\end{aligned}
$$

$$
\begin{aligned}
& 3 \begin{array}{rrr}
6 & -11 & -26 \\
15 \\
18 & 21 & -15 \\
\hline 6 & 7 & -5
\end{array} \quad \text { Roots } \\
& 6 x^{2}+7 x-5=0 \\
& (3 x+5 x(2 x-1)=0 \\
& x=-5 / 3 \quad x=1 / 2
\end{aligned}
$$

$$
\begin{gathered}
-6) \begin{array}{ccc}
2 & -3 & -62 \\
-168 & 168 \\
-90 & -168
\end{array} \\
\hline 2-15 \quad 18 \quad 0 \\
2 x^{2}-15 x+18=0 \\
(2 x-3)(x-6)=0 \quad \text { Roo } \\
x=3 / 2 \quad x=6
\end{gathered}
$$

