Today we learned how to divide polynomials using long division. Below are the notes and practice problems completed in class. As well as the homework assignment.

\qquad

Polynomial Division: Long Division

Divide.

5) $\left(x^{3}+12 x^{2}+26 x+66\right) \div(x+10)$

$$
\text { 6) }\left(4 a^{3}-15 a^{2}+20 a-4\right) \div(a-2)
$$

7) $\left(p^{3}-10 p^{2}+28 p-33\right) \div(p-6)$
8) $\left(a^{3}+4 a^{2}-5\right) \div(a+4)$

$$
\begin{aligned}
& \text { 8) }\left(r^{3}+r^{2}-3 r+1\right) \div(r+3) \\
& \text { 8) } \begin{array}{r}
\left(r^{3}+r^{2}-3 r+1\right) \div(r+3) \frac{8}{r+3} \\
-2 r+3-r+r^{2}
\end{array} \\
& -7 \quad \downarrow \quad r^{2}-2 r+3-\frac{8}{r+3} \\
& \frac{-2 r^{2}}{r}=-2 r \\
& \frac{3 r}{r}=3 \\
& \text { 10) }\left(v^{3}+10 v^{2}-9\right) \div\left(\begin{array}{r}
3 r+1 \\
\frac{-3 r}{}+9 \\
(v+10)
\end{array}-8\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (11) }\left(3 x^{3}-7 x^{2}+3 x+5\right) \div(x-2) / x-2 \frac{3 \sqrt{5}}{-3} \text { 12) }\left(a^{3}-25 a-5\right)+(a+5) \\
& x - 2 \longdiv { 3 x ^ { 2 } - 1 x + 1 + 7 / x - 2 } = \frac { 2 } { 8 } \quad a ^ { 2 } - 5 a + 0 - 5 / a + 5 \\
& -\frac{1 x^{2}}{x} \\
& -\frac{1 x^{2}}{x}-1 x(x-2)_{\frac{1 x}{x}} \\
& +1 x^{2}+2 x \\
& \frac{-5 a^{2}}{a}=-5 a \\
& \frac{0_{a}}{a}=0 \\
& \text { (133) }\left(x^{5}+6 x^{4}-8 x^{2}-47 x+9\right) \div(x+6) \\
& x^{2}+0-8 x+1+3 / 8+6 \\
& x + 6 \longdiv { x ^ { 5 } + 6 x ^ { 4 } - 8 x ^ { 2 } - 4 7 x + 9 } \\
& x^{2}-8 x+1+3 / x+6 \\
& \text { 15) }\left(n^{4}-15 n^{3}+61 n^{2}-35 n-39\right) \div(n-8) \\
& \text { 16) }\left(r^{4}+r^{3}-20 r^{2}+19 r+12\right) \div(r-3) \\
& n-8 \frac{n^{3}-7 n^{2}+5 n+5+1 / n-8}{n^{4}-15 n^{2}+6 \ln ^{2}-35 n-39} \\
& \begin{array}{l}
\frac{n^{4}}{n}=n^{3} \\
\frac{-7 n^{3}}{n}=7 n^{2}
\end{array}
\end{aligned}
$$

> (1) Clivide first terms
> (2) multiply ${ }^{2}$ stribute toplomber
> (3) Subtract product
> 17) $\left(n^{4}-25 n^{2}-4 n-11\right) \div\left(n+\frac{1}{5}\right)$
> 18) $\left(b^{4}-17 b^{3}+81 b^{2}-67 b-30\right) \div(b-8)$
19) $\left(5 x^{4}-49 x^{3}+81 x^{2}-79 x+63\right) \div(x-8)$
20) $\left(k^{4}+2 k^{3}-4 k-18\right) \div(k+2)$

