Today we reviewed the concept of long division by checking the homework assignment. We then learned a new method for dividing polynomials, synthetic division. This method can only be used when dividing by linear binomials. Below you will find the answer to last nights homework followed by the notes we took in class today. Your homework tonight is to complete the rest of the worksheet from last night using synthetic division.

Algetora ?

Polynomial Division: Long Division

Name \qquad
Date \qquad Primal

Divide.

1) $\left(x^{3}-x^{2} x^{3}-37 x-15\right)+(x+5)$
(2) $\left(4 x^{3}-19 x^{2}+13 x+24\right)+(x-3)$
$x - 3 \longdiv { 4 x ^ { 3 } - 1 9 x ^ { 2 } + 1 3 x + 2 4 }$

$+7 x^{2}+21 x$

2) $\left(a^{3}-5 a^{2}-22 a+59\right)+\left(a^{2}-7\right)$

$5 x^{2}-8 x-8+7 / x-7$

5) $\left(x^{3}+12 x^{2}+26 x+66\right)+(x+10)$
6) $\left(4 a^{2}-15 a^{2}+20 a-4\right) \div(a-2)$
7) $\left(p^{3}-10 p^{2}+28 p-33\right)+(p-6)$
8) $\begin{aligned} &\left(r^{2}+r^{2}-3 r\right.+1)+(r+3) \\ &-2 r+3-\frac{3}{2+5}\end{aligned}$

$$
-2 r+3-\frac{2}{2+1}
$$

9) $\left(a^{3}+4 a^{2}-5\right) \div(a+4)$

$$
\begin{aligned}
& \text { (111) }\left(3 x^{3}-7 x^{2}+3 x+5\right)+(x-2) / x-2 \frac{3 \sqrt{5}}{2} \text { (2x) }\left(a^{1}-25 a-5\right)+(a+5) \\
& x - 2 \longdiv { 8 } x ^ { 3 } - 7 x ^ { 2 } + 3 x + 5 \\
& 3 x ^ { 3 } \times \frac { - 3 x ^ { 3 } + 6 x ^ { 2 } } { 1 } \quad 1 \frac { 2 } { 3 } \frac { a ^ { 3 } } { a } \quad a + 5 \longdiv { a ^ { 2 } - 5 a + 0 - 5 / a + 5 } \\
& \begin{array}{l}
-x x^{2}+3 x \\
+1 x^{2}+2 x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (13y }\left(x^{5}+6 x^{4}-8 x^{2}-47 x+9\right)+(x+6) \quad \text { 14) }\left(4 x^{3}+40 x^{4}+2 x+11\right)^{5}+(x+10) \\
& \frac{x^{4}+0-8 x+1+3 / 0}{x^{2}+6 x^{4}-8 x^{2}-47 x} \\
& x + 6 \longdiv { x ^ { 2 } + 6 x ^ { 4 } - 8 x ^ { 3 } - 4 7 x + 9 }
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-8 x+1+3 / 46 \\
& \text { 15) }\left(n^{4}-15 n^{3}+61 n^{2}-35 n-39\right)=(n-8) \\
& \text { 16) }\left(r^{2}+r^{3}-20 r^{2}+19 r+12\right) \div(r-3) \\
& n^{3}-n^{2}-5 n+5+1 m 8 \\
& n-5 \sqrt{0^{2}-50^{2}}+6 h^{2}-35 n-39 \\
& \begin{array}{l}
\frac{n^{4}}{n^{2}}=k^{2} \\
\frac{-7 n^{2}}{n^{2}}=7 n^{2}
\end{array} \\
& \text { (1) divide first terms } \\
& \text { (2) multiply } e^{\text {stribute topnomber }} \\
& \text { (3) Subtract product }
\end{aligned}
$$

17) $\left(n^{4}-25 n^{2}-4 n-11\right)+(n+5)$
18) $\left(b^{4}-17 b^{2}+81 b^{2}-67 b-30\right)-(b-8)$
19) $\left(5 x^{4}-49 x^{3}+81 x^{2}-79 x+63\right)+(x-8)$
20) $\left(k^{4}+2 k^{3}-4 k-18\right) *(k+2)$

- Shortcut for long division
- Can only be used when dividing by a linear binomial. ex. $(x+5)$
- If dividing by $x+5$ set $x+5=0$ and solve for x. Result would be $x=-5$

Dividing by -5 .

- Always check polynomial is in standard form. $x^{3}+4 x^{4}-7 x^{2}+8$

$$
\text { Ex. } 1 \quad\left(x^{3}-2 x^{2}+2 x+5\right) \div\left(\begin{array}{l}
x-1) \\
\text { coefficients }
\end{array}\right.
$$

$$
\begin{gathered}
x-1=0 \\
x=1
\end{gathered}
$$

$$
x=1
$$ dividing

Ex 3. $\left(3 x^{5}-2 x^{4}+x^{2}-4 x+12\right) \div(x-2)$

Ex. $4\left(14 p^{2}+48 p+p^{3}+41\right) \div(p+4)$
-4) $14 \quad 4841 \quad p^{3}+14 p^{2}+48 p+41$

$$
\frac{\downarrow}{1}-4 \quad-40 \quad-32 \quad p^{2}+10 p+8+\frac{9}{p+4}
$$

$$
\begin{aligned}
& \text { Ex.2 } 2\left(3 x^{3}+7 x^{2}-4 x+3\right) \div(x+3) \\
& \begin{array}{cccc}
x+3=0 \\
x=-3 \\
3 x^{2}-2 x+2-\frac{3}{x+3}
\end{array} \\
& 3 x^{2}-2 x+2 \quad-\frac{3}{x+3}
\end{aligned}
$$

