Unit 8: Factoring Quadratics and Operating with Radicals

I CAN:

- Factor expressions by GCF
- Factor a quadratic expression when a=1
- Factor a quadratic expression when $a \neq 1$
- Factor a difference of squares
- Factor completely using all factoring strategies
- Solve a quadratic equation by factoring
- Simplify radical expressions with integer and variable radicands
- Add and subtract radical expressions
- Multiply radicals and divide/rationalize the denominator

Monday	Tuesday	Wednesday		Friday
4 Factoring GCF and Trinomials with $a=1$	5 Factoring trinomials when $a \neq 1$	6 More Practice Factoring Trinomials and Difference of Squares		8 Happy Friday!
11 Solving Quadratic Equations by Factoring	12 Simplifying Radicals	13 Adding \& Subtracting Radicals		15 Happy Friday!
18 Review / Unit 8 Test	19	20	21	22

THIS PLAN IS SUBJECT TO CHANGE. CHECK DAILY NOTES AND BLOG FOR UPDATES.

Warm up: Recall multiplying polynomials...DISTRIBUTE TO MULTIPLY.
a) $2 x(4 x-3)$
b) $(x+5)(x+2)$

The process of factoring is the reverse of the process of distributing.
The goal is to write an expression that is equivalent to the original, by dividing and
"undistributing" any common factors.

FIRST: GREATEST COMMON FACTOR

For every factoring problem, you should begin by looking for a \qquad .

Ex 1: Factor each expression.
a. $2 x^{2}+8 x$
b. $15 x^{2}-35 x$

NEXT: After you have checked for a GCF, your strategy will depend on the number of terms in the polynomial.

THREE TERMS - SUM \& PRODUCT STRATEGIES
 When $a=1$:

If the trinomial is a quadratic expression in standard form, \qquad ,
AND $\boldsymbol{a}=\mathbf{1}$, find two factors of \qquad which have a sum equal to \qquad : then write the quadratic as the product of two binomial factors $(x+p)(x+q)$.

a. $x^{2}+7 x+12$
b. $x^{2}-10 x+25$
c. $2 x^{2}+4 x-70$
d. $5 x^{2}-20 x-225$

When $a \neq 1$: SLIDE AND DIVIDE

1) Multiply $a \cdot c$
2) Find two factors of $a \cdot c$ that have a sum equal to b
3) Set up two binomial factors: $(x+p)(x+q)$
4) Divide p and q by $a \ldots$...then simplify.

Ex 3: Factor each trinomial
a. $2 x^{2}-9 x-18$
b. $8 x^{2}-30 x+7$
C. $6 x^{2}-5 x-4$
d. $3 x^{2}-20 x+32$

TWO TERMS - DIFFERENCE OF SQUARES:
This is also a sum \& product strategy, but notice that the value of the b-term in each example below is \qquad , therefore the sum of the factors must be

Ex 4: Factor each binomial
a. $x^{2}-9$
b. $x^{2}-100$
C. $x^{2}-81$
d. $x^{2}-4$

What pattern do you notice about the factors of a difference of squares?
Ex 5: Use this pattern to factor the following
e. $25 x^{2}-49$
f. $100 x^{2}-121$
g. $16 x^{2}-1$
h. $x^{2}+25$
i. Using multiple strategies: $3 x^{2}-75$

Solving Quadratic Equations by Factoring

According to the Zero Product Property, if the product of two quantities is equal to zero, then one of the quantities must equal zero.

Step 1: Arrange terms in standard form
Step 2: Factor
Step 3: Set each factor $=0$
Step 4: Solve each mini-equation

Recall: Factoring Strategies

- Look for a GCF first!
- 2 terms: Difference of Squares?
- 3 terms: Sum \& Product or Slide \& Divide

Ex 6: Solve each equation by factoring.
a. $x^{2}+3 x-40=0$
b. $x^{2}-9 x=0$
C. $x^{2}-3 x-28=0$
d. $81 x^{2}-100=0$
e. $2 x^{2}-24 x=-72$
f. $3 x^{2}-8 x+4=0$
g. $6 x+16=x^{2}+9$
h. $5 x^{2}+20 x+20=0$
i. $15 x^{2}-10 x=0$
j. $18 x^{2}+25 x-3=0$

Radical Expressions

Perfect Square: x^{2}											
Square Roots: $\sqrt{x^{2}}$											

A radical expression is simplified when there are...
1 no perfect square factors (other than 1) in the radicand
2 no fractions under the radical
3 no radicals in the denominator
To Simplify:

- Find the biggest perfect square factor of the radicand and evaluate its square root, bringing it outside the radical.
- The product of the remaining non-perfect-square factors will stay inside the radical.

Ex 1: Simplify each radical WITHOUT USING A CALCULATOR
a. $\sqrt{16}$
b. $\sqrt{8}$
C. $\sqrt{75}$
d. $\sqrt{40}$
e. $\sqrt{45}$
f. $\sqrt{600}$

When we simplify radicals, we are finding perfect squares - or PAIRS - of factors.
We will use a similar process to simplify radicals containing variables.
Ex 2: Simplify
a. $\sqrt{4 x^{2}}$
b. $\sqrt{98 a^{4} b^{10}}$
C. $\sqrt{27 z^{3}}$
d. $\sqrt{48 x y^{5} z^{9}}$
e. $\sqrt{100 x^{12} y^{7}}$
f. $\sqrt{180 a^{3} b^{6}}$

To simplify radical expressions involving addition and subtraction, we must combine "like radicals," which have identical radicands.

When adding and subtracting radicals, we will:

- Simplify each radical expression
- Combine the like radicals by adding or subtracting their coefficients, keeping the like radicand the same

Ex 4: Simplify
a. $\sqrt{3}+5 \sqrt{3}$
b. $2 \sqrt{6}+\sqrt{24}$
c. $3 \sqrt{2}+\sqrt{5}-4 \sqrt{8}$
d. $9 \sqrt{40}-\sqrt{300}-\sqrt{90}$
e. $\sqrt{72}-4 \sqrt{18}$
f. $\sqrt{20}+2 \sqrt{6}-\sqrt{80}$

Multiplying Radical Expressions
When multiplying two radicals, we will multiply OUTSIDE • OUTSIDE and INSIDE • INSIDE, then simplify.

Ex 5: Simplify
a. $\sqrt{2} \cdot 5 \sqrt{6}$
b. $3 \sqrt{2} \cdot 5 \sqrt{10}$
c. $\sqrt{3}(2-\sqrt{3})$
d. $2 \sqrt{6} \cdot \sqrt{48}$
e. $(5+\sqrt{6})(2-\sqrt{2})$
f. $(-4+\sqrt{6})(-1-\sqrt{6})$
g. $(2-\sqrt{3})(2+\sqrt{3})$
h. $(10+\sqrt{2})(10-\sqrt{2})$

Dividing with Radical Expressions \& Rationalizing the Denominator
Simplify OUTSIDE/OUTSIDE and INSIDE/INSIDE, then rationalize the denominator to eliminate radicals from the bottom of the fraction, as needed. Simplify again, if necessary.

Ex 6: Simplify
a. $\frac{\sqrt{10}}{\sqrt{5}}$
b. $\frac{2 \sqrt{15}}{\sqrt{3}}$
C. $\frac{5}{\sqrt{5}}$
d. $\frac{\sqrt{3}}{\sqrt{6}}$
e. $\frac{6 \sqrt{2}}{2 \sqrt{5}}$
f. $-\frac{9}{\sqrt{3}}$
\qquad
Factoring: GCF and $\mathrm{a}=1$
Date \qquad Period \qquad
Factor the common factor out of each expression.

1) $12 x^{3}-20 x^{2}+12 x$
2) $40 n^{8}-20 n^{4}+5 n^{3}$
3) $24 x^{5}+24 x-32$
4) $32 v^{6}-72 v+8$
5) $-54+45 n-72 n^{2}$
6) $-21 b+70$

Factor each completely.
7) $x^{2}+6 x+8$
8) $r^{2}+5 r$
9) $n^{2}-8 n+15$
10) $n^{2}+5 n-36$
11) $k^{2}+k-42$
12) $3 r^{2}+30 r$
13) $b^{2}-5 b+6$
14) $n^{2}-3 n-28$
15) $2 n^{2}+12 n+16$
16) $6 n^{2}+42 n+60$

Algebra 2 Preview
Name \qquad
Factoring $\mathrm{a}>1$
Date \qquad Period

Factor each completely.

1) $3 x^{2}+11 x+6$
2) $7 x^{2}+12 x-4$

3) $5 b^{2}+11 b-12$

4) $7 v^{2}+52 v-32$
5) $6 x^{2}+8 x-40$
6) $6 a^{2}-39 a-72$
7) $10 n^{2}+51 n+27$
8) $9 x^{2}-67 x+28$
9) $9 x^{2}-64 x+60$
10) $6 r^{2}-11 r-30$
11) $54 x^{2}-18 x-336$
12) $36 b^{2}-180 b+224$

Algebra 2 Preview
 Difference Of Squares

Name
Date \qquad Period

Factor each completely.

1) $4 v^{2}-9$
2) $16 p^{2}-25$
3) $4 a^{2}-25$
4) $a^{2}+9$
5) $16 x^{2}+25$
6) $16 n^{2}-9$
7) $12 p^{2}-3$
8) $16 v^{2}-100$
9) $50 n^{2}-18$
10) $4 a^{2}-1$
11) $k^{2}+9$
12) $5 x^{2}-20$
13) $18 x^{2}-50$
14) $20 k^{2}+125$

Algebra 2 Preview

Name \qquad

Factoring to Solve

Date \qquad Period

Solve each equation by factoring.

1) $m^{2}-m-12=0$
2) $x^{2}+10 x+16=0$
3) $x^{2}+6 x+8=0$
4) $x^{2}+x-30=0$
5) $n^{2}-9 n+18=0$
6) $x^{2}-12 x+32=0$
7) $7 n^{2}+37 n+10=0$
8) $7 n^{2}-41 n-6=0$
9) $5 k^{2}+18 k+16=0$
10) $5 n^{2}+41 n+8=0$
11) $56 m^{2}+312 m-144=0$
12) $9 a^{2}-78 a+144=0$

Algebra 2 Preview
 Simplifying Radicals

Name \qquad
Date \qquad Period \qquad
Simplify.

1) $\sqrt{36}$
2) $\sqrt{80}$
3) $\sqrt{180}$
4) $\sqrt{96}$
5) $\sqrt{72}$
6) $\sqrt{8}$
7) $\sqrt{16}$
8) $\sqrt{54}$
9) $\sqrt{128 x^{4}}$
10) $\sqrt{20 x^{3}}$
11) $\sqrt{243 x^{2}}$
12) $\sqrt{20 x^{3} y}$
13) $\sqrt{200 x y^{2}}$
14) $\sqrt{72 x^{4} y^{4}}$
15) $\sqrt{5184 u^{5} v^{2}}$
16) $\sqrt{4693 x^{10} y^{12}}$

Algebra 2 Preview
Name \qquad

Adding and Subtracting Radicals

Date \qquad Period

Simplify.

1) $2 \sqrt{3}+2 \sqrt{3}$
2) $2 \sqrt{3}-\sqrt{3}$
3) $-2 \sqrt{6}-\sqrt{6}$
4) $-2 \sqrt{3}-3 \sqrt{5}+3 \sqrt{3}$
5) $2 \sqrt{2}-\sqrt{2}-\sqrt{2}$
6) $3 \sqrt{6}-3 \sqrt{6}-\sqrt{6}$
7) $-\sqrt{24}-2 \sqrt{20}+3 \sqrt{45}$
8) $3 \sqrt{3}+2 \sqrt{12}-\sqrt{12}$
9) $2 \sqrt{2}-2 \sqrt{54}-\sqrt{2}$
10) $-\sqrt{5}+3 \sqrt{20}-\sqrt{2}$
11) $-\sqrt{3}-3 \sqrt{27}-3 \sqrt{6}$
12) $2 \sqrt{8}+3 \sqrt{5}-\sqrt{2}$
13) $-\sqrt{6}+2 \sqrt{6}-2 \sqrt{2}-2 \sqrt{6}$
14) $3 \sqrt{6}-2 \sqrt{5}-\sqrt{2}-2 \sqrt{5}$
15) $-2 \sqrt{6}-\sqrt{2}-2 \sqrt{6}-2 \sqrt{2}$
16) $-3 \sqrt{6}-\sqrt{5}-3 \sqrt{5}-2 \sqrt{6}$
17) $\sqrt{15} \cdot \sqrt{12}$
18) $5 \sqrt{5} \cdot-4 \sqrt{5}$
19) $-4 \sqrt{8} \cdot-3 \sqrt{8}$
20) $\sqrt{6}(\sqrt{2}+\sqrt{6})$
21) $\sqrt{2}(\sqrt{2}+4)$
22) $4 \sqrt{15}(3 \sqrt{2}+5 \sqrt{3})$
23) $5 \sqrt{6}(2 \sqrt{3}-5 \sqrt{2})$
24) $(\sqrt{5}-3)(\sqrt{5}+3)$
25) $(-3+\sqrt{3})(-4+\sqrt{3})$
26) $(1+3 \sqrt{5})(5-4 \sqrt{5})$
27) $\frac{\sqrt{9}}{\sqrt{15}}$
28) $\frac{\sqrt{5}}{\sqrt{2}}$
29) $\frac{\sqrt{8}}{\sqrt{10}}$
30) $-\frac{2}{\sqrt{2}}$
31) $\frac{2 \sqrt{4}}{4 \sqrt{6}}$
32) $\frac{4 \sqrt{3}}{\sqrt{15}}$
33) $\frac{4 \sqrt{4}}{\sqrt{3}}$
34) $\frac{5 \sqrt{9}}{2 \sqrt{15}}$
35) $\frac{\sqrt{5}}{\sqrt{10}}$
36) $\frac{\sqrt{8}}{4 \sqrt{6}}$
