01/08/2020

Today we studied parallel lines and the angle properties that arise from transversals. This added to the properties we learned Monday and Tuesday. The key ones being Linear Pairs are supplementary and Verticals Angles are congruent. We also began our initial look into triangle properties. Below you can find the notes and practice we completed in class

9

Example 2 Congrvent \cong Find m(ABD. A|L. Int. \cong 2x+100 10x-150 E 2x+100 E 2x+100 E 2x-15 2x-152x

11

Name: ____

Date:

Tonight's homework is to complete pages 14 and 15 in the packet.

Name	Date	Class
Notes		
Isosceles a	nd Equilateral Triangl	es
Theorem		Examples
Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.		$T = \overline{RS}, \text{ then } /T > /S.$
Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.		$ \frac{L}{\int_{M}^{N} \frac{1}{\int_{M}^{N} \frac{1}{N}} M} M = \overline{LM}. $
You can use these theo	prems to find angle measure	es in isosceles triangles.
Find m $\angle E$ in $\triangle DEF$. m $\angle D = m \angle E$ 5x8 = (3x + 14)8 2x = 14 x = 7	Isosc. \triangle Thm. Substitute the given valu Subtract 3x from both sid Divide both sides by 2.	es. F $(3x + 14)^{2}$ E

Thus $m \angle E = 3(7) + 14 = 358$.

Find each angle measure.

(6x + 18)[^]

1. m∠C=_

G <

4. m∠*M* = _

C Houghton Millin Harcourt Publishing Company

3. m∠H = _____

Holt McDougal Analytic Geometry

Name

Notes

Find each value.

5. n=

7. VT =_____

8. MN = _____

D Houghton Millin Harcourt Publishing Company

Holt McDougal Analytic Geometry