Today we studied parallel lines and the angle properties that arise from transversals. This added to the properties we learned Monday and Tuesday. The key ones being Linear Pairs are supplementary and Verticals Angles are congruent. We also began our initial look into triangle properties. Below you can find the notes and practice we completed in class

If the $\mathrm{m} \angle B$ is x , what is the $\mathrm{m} \angle A$?
A. $2 x$
B. $90-\mathrm{x}$
C. $180-\mathrm{x}$

D. Not enough information to determine.

1

Alternate Interior Angles

- Opposite sides of the
transversal \& inside the parallels
- Are LLongruent Equation:

$$
\text { angle }=\text { angle }
$$

3

5

4

6

Name: \qquad Date: \qquad
Parallel Lines and Transversal Homework

Find the value of x and y.

Find the value of x.

Find the measures of all labeled angles in the diagram. \rightarrow assumelimes mut pouralal are 10.

II

$$
\begin{aligned}
& 6=90^{\circ} \\
& 7=37^{\circ} \\
& 8=143^{\circ} \\
& 9=37^{\circ} \\
& 10=143^{\circ}
\end{aligned}
$$

1

Base Angles

- If $\mathbf{2}$ angles in a triangle are congruent, then the sides opposite them are congruent.

3

Base Angles

- If 2 sides in a triangle are congruent, then the angles opposite them are congruent.

5

Isosceles Triangles

4

6

Tonight's homework is to complete pages 14 and 15 in the packet.

Name \qquad Date \qquad Class \qquad

Notes

Isosceles and Equilateral Triangles

Theorem	
Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	
Converse of Isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	

You can use these theorems to find angle measures in isosceles triangles.
Find $m \angle E$ in $\triangle D E F$.

$\mathrm{m} \angle D$	$=\mathrm{m} \angle E$		sosc. \triangle Thm.
5×8	$=(3 x+14) 8$		Substitute the given values.
$2 x$	$=14$		Subtract $3 x$ from both sides.
x	$=7$		Divide both sides by 2.

Thus $\mathrm{m} \angle E=3(7)+14=358$.

Find each angle measure.

1. $\mathrm{m} \angle C=$

\qquad

2. $\mathrm{m} \angle H=$ \qquad 4. $\mathrm{m} \angle M=$ \qquad
\qquad Date \qquad Class \qquad

Notes

Isosceles and Equilateral Triangles continued

Equilateral Triangle Corollary

If a triangle is equilateral, then it is equiangular.
(equilateral $\Delta \rightarrow$ equiangular Δ)
Equiangular Triangle Corollary
If a triangle is equiangular, then it is equilateral.
(equiangular $\Delta \rightarrow$ equilateral Δ)

$$
\text { If } / A>/ B>/ C \text {, then } \overline{A B} \cong \overline{B C} \cong \overline{C A} \text {. }
$$

You can use these theorems to find values in equilateral triangles.
Find x in $\triangle S T V$.
$\triangle S T V$ is equiangular.
$(7 \mathrm{x}+4) 8=60^{\circ}$

$$
7 x=56
$$

$$
x=8
$$

Equiiaierai $\Delta \rightarrow$ equiangular Δ
The measure of each \angle of an equiangular \triangle is 60°.

Subtract 4 from both sides.
Divide both sides by 7 .

Find each value.

5. $n=$ \qquad
6. $x=$ \qquad

\qquad
7. $V T=$
8. $M N=$ \qquad

