Today we continued studying angle properties with a focus on the triangle exterior angle theorem. After notes we completed a review activity that can be found at http://bit.ly/anglesbreakout

Tonight's homework is to complete this activity if not finished in class and to complete pages 18 and 19 in the packet.

7

9

8

10
\qquad
\qquad
Notes
Isosceles and Equilateral Triangles

Theorem	
Isosceles Triangle Theorem If two sides of a triangle are congruent, then the angles opposite the sides are congruent.	
Converse of isosceles Triangle Theorem If two angles of a triangle are congruent, then the sides opposite those angles are congruent.	

You can use these theorems to find angle measures in isosceles triangles.
Find $m \angle E$ in $\triangle D E F$.

$$
\begin{aligned}
\mathrm{m} \angle D & =\mathrm{m} \angle E \\
5 \times 8 & =(3 x+14) 8 \\
2 x & =14 \\
x & =7
\end{aligned}
$$

$$
\text { Isosc. } \Delta \text { Thm. }
$$

Substitute the given values.
Subtract $3 x$ from both sides.

Divide both sides by 2 .
Thus $\mathrm{m} \angle E=3(7)+14=358$.
Find each angle measure.

1. $m \angle c=51^{\circ}$

2. $\mathrm{m} \angle \mathrm{H}=72^{\circ}$

$$
8(9)>72
$$

2. $m \angle Q=47^{\circ}$

$4 . \mathrm{m} M=60^{\circ}$
$30+30=60$
\qquad
\qquad
\qquad
Notes
Isosceles and Equilateral Triangles continued

Equilateral Triangle Corollary If a triangle is equilateral, then it is equiangular.
(equilateral $\Delta \rightarrow$ equiangular Δ)
Equiangular Triangle Corollary If a triangle is equiangular, then it is equilateral. (equiangular $\Delta \rightarrow$ equilateral Δ)

If $/ A>/ B>/ C$, then $\overline{A B} \cong \overline{B C} \cong \overline{C A}$.

You can use these theorems to find values in equilateral triangles.
Find x in $\triangle S T V$.
$\triangle S T V$ is equiangular.
Equilateral $\Delta \rightarrow$ equiànguiai Δ $(7 x+4) 8=60^{\circ}$ The measure of each \angle of an equiangular Δ is 60°.

$$
7 x=56
$$

Subtract 4 from both sides.
$x=8$
Divide both sides by 7 .

Find each value.

5. $n=$

7. $V T=$ \qquad

$$
V T=5(2)+8=18
$$

$5 n=60$ $n=12$

$$
2 x-6=60
$$

$$
2 x=66
$$

6. $x=$ \qquad $x=33$
7. $M N=$

$$
y+10=4 y+1
$$

$$
\begin{aligned}
& 9=3 y \\
& 3=y
\end{aligned}
$$

$$
M N=4(3)+1=13
$$

© 2018 K ut a Softwarel L C .
Assignment
Date \qquad Period \qquad
Find the measure of each angle indicated.

1) Ext. L'S

$$
\begin{array}{r}
105+? \stackrel{r}{=}=150 \\
?=45^{\circ}
\end{array}
$$

2) Ext. L'S
$T \underbrace{?}_{\substack{115^{\circ} U \\ 92^{\circ}}}+2+0=115$
3)

$$
\begin{gathered}
x+125=145 \\
x=20
\end{gathered}
$$

4)

$x+22=138$

$$
x=116^{\circ}
$$

Solve for \boldsymbol{x}.

5)

$$
3 x+120=14 x+10
$$

7)

$$
\left\|_{0}=\right\| x
$$

$$
10=x
$$

6)

$$
\begin{array}{r}
5 x+28 x-2=130 \\
33 x-2=130 \\
33 x=132
\end{array}
$$

8)

$96=8 x$
$12=x$

O 2018 Kit Software LLC. Atitights reserved- Made with infinite geometry.
16

Find the value of x.
9)

$$
\begin{gathered}
x+31+31=180 \\
x+62=180 \\
x=118^{\circ}
\end{gathered}
$$

10)

$\left\{\begin{aligned} & x \\ & 2 x+44=180 \\ & 2 x=136 \\ & x=68\end{aligned}\right.$
11) $m \angle 2=x+96$
$45+45+x+96=180$

$186+x=180$
$x=-6$
12) $m \angle 2=12 x+10$

$49+49+12 x+10=180$ $12 x+108=180$

$$
\begin{gathered}
12 x=72 \\
x=6
\end{gathered}
$$

13)

$57+57+x=180$

$$
x+114=180
$$

14)

$$
\begin{array}{r}
x+x+68=180 \\
2 x+68=180 \\
2 x=112 \\
x=56
\end{array}
$$

$$
x=66
$$

16) $m \angle 2=5 x-8$
17) $m \angle 2=x+59$

$$
5 x+130=180
$$

$$
\begin{aligned}
5 x & =50 \\
x & =10
\end{aligned}
$$

