Compounded Interest

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \quad A=P e^{r l}
$$

$A=$ Final amount
$P=$ Principal amount (starting amount)
$r=$ rate (percentage as a decimal) $0,74 \% \rightarrow 0.074$
$n=$ number of times compounds per year.
$t=$ number of years (rime)

$n=$	Compounding Periods
1	annually
2	semiannually
4	quarterly
12	monthly
52	weekly
365	daily
use other equation Continuously	

equation

Bob is depositing $\$ 400$ in a savings account with 7% interest, compounded monthly. How much will be in the savings ac-

$$
\begin{array}{ll}
\begin{array}{ll}
\text { count 1 1 } 1 \text { years } & \\
P=P\left(1+\frac{r}{n}\right)^{n t} \\
P=400 & A=400\left(1+\frac{0.07}{12}\right)^{12} \\
==0.07 & A=\$ 803.86 \\
n=12 & A=\$ \\
t=10 &
\end{array}
\end{array}
$$

Janet started a bank account 12 years ago which paid 6% interest, compounded quarterly. and then forgot about it. She just remembered she had the account and checked the balance. She now has $\$ 10,217.39$. How much was her initial deposit? ($4 \cdot 12$)

$$
\begin{aligned}
& A=10,217.39 \\
& P=P \\
& r=0.06 \\
& n=4 \\
& t=12
\end{aligned}
$$

$$
10,217.39=P\left(1+\frac{.066}{4}\right)^{48}
$$

How long will it take for Robert to ears
$\$ 1200$ on $\$ 500$ that earns 9% interest, compounded daily?

$$
\begin{aligned}
& A=1200 \quad \frac{1200}{500}=\frac{500\left(1+\frac{0.0}{35}\right)^{355}}{500} \text { issuable bose } \\
& P=500 \\
& (1.0002)^{365 t}=2.4
\end{aligned}
$$

$$
n=0.09 \quad \log _{1.0002} 2.4=365 t
$$

$$
n=365
$$

$$
\begin{aligned}
& n=365 \\
& t=t \quad \frac{\log 24}{\log 1,002}=365 t \rightarrow 3550.95=365 t \\
& 9,7 z=t
\end{aligned}
$$

$$
9.72=t
$$

money market account which pays 7.2%, compounded continuoust. $A=P e^{t^{+}}$
How much will he have in s years?
$A=A$
$P 2000$
$r=0.072$
$A=2000 e^{(0.072 \times 5)}$
$t=5$
$A=2866.66$
When will the money double in value?

$$
\begin{aligned}
& A=4000 \\
& P=2000
\end{aligned}
$$

$r=0.072$
$t=t$

Name:

$A=P\left(1+\frac{r}{n}\right)^{m}$, where P is the principal, r is the rate of interest, n is the type of compounding and t is the length of the investment.
$A=P e^{\prime \prime}$, where P is the principal, r is the rate of interest, and t is the length of the investment.

1. Ron invested $\$ 55,000$ in a nine-year $C D$ that pays out twelve percent compounded monthly. What is the amount after fifteen years?
2. Rick has a savings bond that will be worth $\$ 8,220$ in eight years. The interest rate of the bond is 5% that is compounded semiannually. Find the present value of the bond.
3. $\$ 650$ is invested at 5.2% in an account that is compounded continuously. How longwould it take for the account to reach a balance of $\$ 1000$?
4. The number of tissue cells in a culture at the beginning of the experiment was 4300 . If the cells split at a rate of $r=.12$, how many days will it take the culture to double? (Use $P=P_{0} e^{r}$, where $P_{0}=\#$ of cells at start, P = \# of cells at end, $r=r a t e, t=$ time in days.)
5. James has a savings bond that will be worth $\$ 10,000$ in seven years. The bond has an interest rate of 20% that is compounded semi-annually. Find the present value of the bond.
6. If $\$ 2500$ is invested in an account that is compounded continuously for 5 years, the account grows to $\$ 3200$. What would the interest rate be on this account?
